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Abstract

In common life we often need to take every information into account. In this work, handling of different types of
given information or knowledge is addressed. The idea of the treatment is to find a suitable model describing the provided
knowledge pieces. To successfully solve this task, we use the Supra-Bayesian approach.

I. Introduction - problem formalization

Decision making is an integral, often unrecognized part of our life. If we consider a parametric (population) model,
which has one or more unknown parameters, the statistical analysis helps us to gain information from past experience.
In order to make the conclusions about them we adopt Bayesian approach where the unknown parameters are treated as
random variables.

Bayesian approach used in the parameter estimation is well-elaborated only when the knowledge pieces are given as
“ordinary” crisp data (“single values”). No systematic treatment of incompletely compatible knowledge pieces have been
given yet. In recently published papers [1] and [2] it is suggested that a Supra-Bayesian approach, see [3], could give
a systematic solution. This approach expresses the task of combining the given knowledge pieces as the task of constructing
a posterior probability mass function (pmf) or probability density function (pdf) for a fictitious decision maker by using
Bayes’ theorem. The given knowledge pieces are used as a random data and the ideal merger is estimated as unknown
parameter. Both works use this Supra-Bayesian approach, but they differ in relating knowledge pieces to the ideal merger,
called “supra-model”. Results in these works are promising, but we will not get a Bayesian rule from constructed optimal
merger, when “ordinary” data (data values) and parametric model are used.

In this work we try to remove this problem and construct a generally applicable merger for discrete case – the considered
sources deal with discrete quantities.

We number the available sources and we focus on the first source. We introduce the task of improving its knowledge. To
do this we use the knowledge pieces given by its neighbors. The idea of solving this task consists of two main steps:

1 assume that the first source and all its neighbors provide the knowledge pieces about the same domain and that this
knowledge pieces has the form of pmf of the discrete random vector (of the domain).

The original task of improving the first source’s knowledge is now equal to the construction of optimal estimate of
pmf based on given pmfs. Which is in fact equal to construction of the optimal merger of given knowledge pieces.

2 solve the situation when other forms of knowledge pieces (also incompletely compatible) are given.

We focus on how to transform and extend other forms of knowledge pieces into pmfs, so the previously mentioned
merger can be used. In the end we project the result back on the domain of each source.

II. The construction of the optimal estimate (of the optimal merger)

Notation used in the text:
• a source: i.e. human being,
• a domain: (discrete) random vector (with finite set of realizations),
• a knowledge piece: information about a part of or whole random vector given by specific source,
• a neighbor: source, domain of which has a nonempty intersection with domain of the first source,
• X - a (discrete) random vector (domain),
• x1, . . . ,xn realizations of considered random vector, n <∞,
• (gj(x1), . . . , gj(xn)) = gj - vector of probabilities given by jth source, j = 1, . . . , s,
• D = (gT

1 , . . . , g
T
s )T matrix of knowledge pieces given by the first source and its s− 1 neighbors,

• h = (h(x1), . . . , h(xn)) the unknown merger (unknown vector of probabilities),
• H = {h :

∑n
i=1 h(xi) = 1, h(xi) ≥ 0, i = 1, . . . , n},

• Ĥ is a set of all possible decisions (conclusions) about the parameter h, Ĥ ⊆ H ,
• L(., .) - loss function (see [4]), K(., .) - Kerridge inaccuracy (see [5]),
• Oĥ the optimal estimate of h (the optimal merger of given knowledge pieces).



The solution of proposed estimation task is found as (see [4]): Arg minĥ∈ bH
∫

H
L(h, ĥ)π(h|D)dh.

Furthermore, if we use Kerridge inaccuracy as a loss function (see Subsection 1.), the solution reduces to the following
task:

Arg min
ĥ∈Ĥ

Eπ(h|D)[K(h, ĥ)|D], (1)

where the used notation means conditional expected value with respect to (yet not constructed) pdf π(h|D).

Proposition II..1. Let µ, η be the measures defined on measure spaces (×m
k=1Xk,⊗m

k=1Bk), (H,H), so that
(×m

k=1Xk,⊗m
k=1Bk, µ), (H,H, η) are σ-finite measure spaces. Under assumption that:∫

H×(×m
k=1Xk)

π(h(x)|D)h(x) log ĥ(x)d(µ× η) <∞, (2)

the solution of task (1) for Ĥ = H has the form:

Oĥ = Eπ(h|D)(h|D). (3)

This can be seen by straightforward evaluation, by using Fubini’s theorem (see [6]) and properties of Kerridge inaccuracy.

1. Kerridge inaccuracy as a loss function
Assume that probability vector h is given. Then the optimal estimate has to satisfy (according to Bayesian approach):

Oĥ ∈ Arg min
ĥ∈Ĥ

L(h, ĥ)

and since h is given and H = Ĥ , we also know that the minimum is reached for Oĥ = h.
For the set of all loss functions reaching the finite minimum for Oĥ it is shown in [7], that the Kerridge inaccuracy
K(h,Oĥ) = −

∑n
i=1 h(xi) log Oĥ(xi) is a representative of this set of loss functions.

When h is unknown then according to the Bayesian set-up the optimal estimate is found as:

Oĥ ∈ Arg min
ĥ∈Ĥ

Eπ(h|D)L(h, ĥ),

where π(h|D) is the posterior pdf of the possible values of h ∈ H . Putting these statements together, we get:

Oĥ ∈ Arg min
ĥ∈Ĥ

Eπ(h|D)K(h, ĥ). (4)

2. Construction of posterior pdf
Since the set of all possible posterior pdfs π(h|D) is large, to choose the optimal one we put some additional conditions

on the form of π(h|D). The considered set will diminish and from the remaining possible posterior pdfs we choose the one
with the highest entropy (see [8]). We define the constraints on the posterior pdf:

• jth source takes h as its representative if h is close to the pmf gj (vector of probabilities) given by jth source,

meaning the conditional expectation of Kerridge inaccuracy of gj on h is smaller than or equal to some positive finite
value βj(D):

Eπ(h|D)[K(gj , h)|D] ≤ βj(D). (5)

From the set of possible posterior pdfs of h satisfying constraints (5) we choose the one with maximum entropy. Which
means we are looking for solution of the following optimization task:

Arg max
π(h|D)∈M

−
∫

H

π(h|D) log π(h|D)dh, (6)

where M = {π(h|D) : Eπ(h|D)(K(gj , h)|D)− βj(D) ≤ 0, j = 1, . . . , s,
∫

H
π(h|D)dh− 1 = 0}.

Proposition II..2 (Optimal posterior pdf). Let all constraints in (6) be active. Then, the optimal solution of the optimization
task (6) is:

Oπ(h|D) =
1

Z(λ1(D), ..., λs(D))

n∏
i=1

h(xi)
Ps

j=1 λj(D)gj(xi), (7)

where Z(λ1(D), ..., λs(D)) > 0 and λj(D) > 0 j = 1, . . . , s.

Main steps of the proof are:



1. equivalently rewrite the task (6) as:

Arg min
π(h|D)∈M

∫
H

π(h|D) log π(h|D)dh, (8)

M = {π(h|D) : Eπ(h|D)(K(gj , h)|D)− βj(D) ≤ 0, j = 1, . . . , s,
∫

H
π(h|D)dh− 1 = 0}.

2. we assume that there exists
Oλ(D) = (Oλ1(D), . . . ,Oλs(D)) ∈ Rs

+

that (Oπ(h|D),O λ(D)) satisfies Global Optimality Conditions (see [9]); then the global minimum of the original
task (6) is reached in Oπ(h|D).

3. by using the theory of nonlinear programming (see [9]) and by assuming of the applicability of Fubini’s theorem we
rewrite the Lagrangian of the task (8) as follows:

L(π(h|D);λ(D)) =

=
∫

H
π(h|D) log π(h|D)dh+ λ1(D)

(
Eπ(h|D)(K(g1, h)|D)− β1(D)

)
+ . . .

+λs(D)
(
Eπ(h|D)(K(gs, h)|D)− βs(D)

)
=
∫

H
π(h|D) log

 π(h|D)
Qs

i=1 h(xi)

Ps
j=1 λj(D)gj(xi)

Z(λ1(D),...,λs(D))

 dh− logZ(λ1(D), . . . , λs(D))
∫

H

π(h|D)dh︸ ︷︷ ︸
=1

−
∑n

j=1 λj(D)βj(D)

= D(π(h|D)||Oπ(h|D))− logZ(λ1(D), . . . , λs(D))−
∑n

j=1 λj(D)βj(D)
4. minimum of the Lagrangian is reached for π(h|D) = Oπ(h|D) a.e., because the first part D(π(h|D)||Oπ(h|D)),

which is Kullback-Leibler divergence of π(h|D) on Oπ(h|D), is minimal for π(h|D) =O π(h|D) a.e. and the
remaining part of Lagrangian does not depend on π(h|D) and does not influence the minimization.

3. Merging, construction of the optimal estimate
Proposition II..3 (The optimal estimate Oĥ). Let us define ν0, ν1, . . . , νn as:

νi = 1 +
s∑

j=1

λj(D)gj(xi), i = 1, . . . , n, ν0 =
n∑

i=1

νi

and the normalizing constant Z(λ1(D), . . . , λs(D)) from the formula (7) as:

Z(λ1(D), . . . , λs(D)) =
∏k

i=1 Γ(νi)
Γ(ν0)

.

Here, λj(D) = Oλj(D) > 0, j = 1, . . . , s, from Proposition II..2. Then, the optimal estimate Oĥ of h has the form:

EOπ(h|D)(h(xi)|D) = Oĥ(xi) = λ∗0(D) +
s∑

j=1

λ∗j (D)gj(xi), (9)

where
λ∗0(D) = 1

n+
Ps

j=1 λj(D) , λ∗j (D) = λj(D)
n+
Ps

j=1 λj(D) , nλ∗0(D) +
∑s

j=1 λ
∗
j (D) = 1, λ∗j (D) > 0, j = 0, . . . , n.

Main steps of the proof:
1. the optimal posterior pdf has the form:

Oπ(h|D) =
1

Z(λ1(D), ..., λs(D))

n∏
i=1

h(xi)
Ps

j=1 λj(D)gj(xi) =
1

Qk
i=1 Γ(νi)

Γ(ν0)

n∏
i=1

h(xi)νi−1. (10)

Since we know, that: h(xi) ≥ 0 for i = 1 . . . , n,
∑n

i=1 h(xi) = 1

and: νi = 1 +
∑s

j=1 λj(D)gj(xi) > 0 for i = 1, . . . , n, because: λj(D) > 0 for j = 1, . . . , s and gj(xi) ≥ 0,

then (10) is a pdf of Dirichlet distribution Dir(h(x1), . . . , h(xn); ν1, . . . , νn).
2. by using the properties of Dirichlet distribution we get:

Oĥ(xi) = EOπ(h|D)(h(xi)|D) = νi

ν0
=

1+
Ps

j=1 λj(D)gj(xi)Pn
i=1[1+

Ps
j=1 λj(D)gj(xi)]

= 1
n+
Ps

j=1 λj(D) +
∑s

j=1
λj(D)

n+
Ps

j=1 λj(D)gj(xi),
which is the optimal estimate we are looking for.



III. Extension of the other forms of given information

In previous section we assumed that every source gives the piece of information in the form of the joint pmf of a collection
of discrete random variables X (concretely as a probability vector of possible realizations x1, . . . ,xn). In this section other
possible forms of the given knowledge pieces are presented and their transformation into joint pmf of X (into a probability
vector of possible realizations x1, . . . ,xn), useful for merging (see the previous section), is discussed.
Let:

• Pj denote part of X, which describes the jth source’s past experience (random variables, realizations of which
describe the random past history for a particular source); p belongs to the set of possible realizations of Pj ,

• Fj denote a part of X, which describes the jth source’s ignorance (random variables with unknown realizations of
the future for a particular source); f belongs to the set of possible realizations of Fj ,

• Uj denote a part of X, that is unconsidered by the jth source; u belongs to the set of possible realizations of Uj .
Considered forms of knowledge pieces given by the jth source are:

1) moments:

– conditional moments of Fj ⊂ X on a part Pj ⊂ X, (Fj ∪Pj) ⊆ X,

– moments of Pj ⊆ X
2) a concrete realization (value) of Fj ⊂ X on a part Pj ⊂ X, (Fj ∪Pj) ⊆ X, or

a concrete realization of Pj ⊆ X,
3) conditional pmf (in the form of probability vector) of Fj on Pj , where (Fj ∪Pj) ⊆ X, denoted by gj(f |p)
4) joint pmf (in the form of probability vector) of Pj ⊂ X (marginal pmf of X), denoted by gj(p)
Since the aim of this section is to construct the joint pmf of X, we need to transform type 1) and 2) of given knowledge

pieces into probabilistic terms.

1. Moments given
Possible types of moments, the jth source can provide, are:
• conditional moments of Fj ⊂ X on a part Pj ⊂ X, (Fj ∪Pj) ⊆ X, denoted by:

Egj(f |p)(φ(Fj ,Pj)|Pj) = ψ(Pj), (11)

where φ, ψ are functions specified by the source and the expectation is taken with respect to a, yet unspecified, pmf
gj(f |p), existence of which is assumed.

• moments of Pj ⊆ X, denoted by :
Egj(p)(φ(Pj)) = ψ, (12)

where φ and ψ are a function and a value specified by the source and the expectation is taken with respect to a, yet
unspecified, pmf gj(p), existence of which is assumed.

For a further treatment, we transform this type of knowledge pieces into probabilistic terms – probabilities of outcomes
of random variables considered by jth source: we focus on construction of gj(f |p) or gj(p).
If jth source gives the conditional moments (11), the idea for construction of gj(f |p) is:

• from the set of all possible conditional pmfs of Fj conditioned on Pj (existence of them is assumed) construct a set
of conditional pmfs satisfying (11): {g∗j (f |p)}

• and from {g∗j (f |p)} choose the conditional pmf with the maximum entropy, it means choose the pmf for which
holds: gj(f |p) = Arg max{g∗j (f |p)}−

∑
(f ,p) g

∗
j (f |p) log g∗j (f |p)

By applying the same idea on the case, when the jth source gives the moments (12), we get gj(p).

2. Ordinary data given
In this section, the knowledge pieces, the jth source can provide, are:
• a realization of Fj conditioned on Pj , where (Fj ∪Pj) ⊆ X is denoted by (f ,p)
• realization of Pj ⊆ X is denoted by p

Again we try to express this type of given knowledge pieces in probabilistic terms – the pmf of random variables considered
by the jth source.

To do this we use the measure concentrated on one point – Kronecker delta:
δK
i,j = 1 if i = j

= 0 otherwise.
In case, where (f ,p) is given, we define gj(f |p) as δK

(f ,p),(f ,p):

gj(f |p) = 1 if (f ,p) = (f ,p)
= 0 otherwise.

The gj(f |p) is a pmf since it satisfies:∑
p gj(f |p) =

∑
(f ,p) δ

K
(f ,p),(f ,p) = 1 and gj(f |p) ≥ 0 for all possible realizations (f ,p).

In case, when p is given, we use the same idea and we define gj(p) as δK
p,p.



3. Extension of unified data
Since all given knowledge pieces have now the form of pmfs of random variables considered by a particular source:

gj(f |p) or gj(p), we can focus on their extension into a joint pmf of X denoted by egj , further in text called extension egj .
Under the following assumptions:

• we consider the unknown pmf h of X as a random probability vector,
• pi/fi/ui denote the possible realizations of p/f /u, which are parts of xi: xi = (ui, fi,pi), i = 1, . . . , n,
• {{gj(fi|pi) or gj(pi)}j=1,...,s}i=1,...,n is (s× n) matrix, where gj(fi|pi), gj(pi) are random variables, for which:

gj(fi|pi) ≥ 0, gj(pi) ≥ 0 for j = 1, . . . , s, i = 1, . . . , n,∑n
i=1 gj(fi|pi) = 1,

∑n
i=1 gj(pi) = 1 for j = 1, . . . , s,

• (s× n) matrix D is a realization of the above matrix,
we introduce the following constraints:

1. the first and intuitively clear assumption on the extension egj is: the projection of egj on the jth source’s domain –
egj(f |p) – coincides with gj(f |p).

2. the extension egj is to be as close as possible to the unknown pmf h (see the beginning of the Section II. - sources
provide knowledge pieces about X in the form of joint pmf, where X is described by the unknown pmf h). In terms
of Bayesian decision theory h is the unknown multivariate random parameter taking values in H . We want egj to be
the minimizer of Eπ(h|D)[K(h, eg∗j )|D], where eg∗j belongs to a set of all possible pmfs satisfying the constraint 1.
denoted by {eg∗j }.

This requirement means, under assumption of applicability of Fubini’s theorem, that:
egj = Arg min{eg∗j } Eπ(h|D)

(
K(h,e g∗j )

)
= Arg min{eg∗j } K(Eπ(h|D)(h|D),e g∗j ),

where the global minimum is reached for egj = Eπ(h|D)(h|D), see [5]. In the previous section, it is denoted by Oĥ
(i.e. see Proposition II..1).

3. the last natural assumption, we already used in previous step, is that egj uses all elements of D.
The extensions of unified knowledge pieces are discussed in following sections.

4. Conditional probabilities on a part of random vector
Proposition III..1. Let the conditional pmf gj(f |p) of Fj on Pj , (Fj ∪ Pj) ⊂ X, be given. Then under the assumption
that

Oĥ = Eπ(h|D)(h|D)

the pmf egj , represented by a probability vector (egj(x1), . . . ,e gj(xn)) with:

egj(xi) =O ĥ(ui|fi,pi)gj(fi|pi)Oĥ(pi), i = 1, . . . , n, (13)

is the unique extension of gj(f |p) meeting the previously mentioned constraints 1., 2., 3..

Proof. In the proof, the following definition of conditional probability is used.
The conditional probability of events A1, A2, A3 (under the assumption that P(A2, A3) > 0 and P(A3) > 0) is:

P(A1|A2, A3) = P(A1,A2,A3)
P(A2,A3)

, P(A2|A3) = P(A2,A3)
P(A3)

.

The probability of (A1, A2, A3) is then: P(A1, A2, A3) = P(A1|A2, A3)P(A2|A3)P(A3).
Since the projection of egj on the jth source’s domain is egj(f |p) = gj(f |p), the constraint 1. is satisfied.
If we realize that:∑n

i=1 h(xi) log egj(xi) =
∑n

i=1 h(ui, fi,pi) log egj(ui, fi,pi) =
∑

u

∑
f

∑
p h(u, f ,p) log egj(u, f ,p)

then by assuming of applicability of Fubini’s theorem, we can rewrite the task stated in the constraint 2. as follows. By
inserting proposed egj into the minimized expected Kerridge inaccuracy, we get:

EK(h,e gj) = −
∫

H

π(h|D)
n∑

i=1

h(xi) loge gj(xi)dh

= −
∫

H

π(h|D)
∑
u

∑
f

∑
p

h(u, f ,p)× log
(

Oĥ(u|f ,p)gj(f |p)Oĥ(p)
)

dh

= −
∑
f

∑
p

∫
H

π(h(u, f ,p)|D)h(f |p)dh×

(∑
u

∫
H

π(h(u, f ,p)|D)h(u|f ,p) log Oĥ(u|f ,p)dh

)

−
∑
u

∑
p

∫
H

π(h(u, f ,p)|D)h(u|f ,p)h(p)dh×

(∑
f

∫
H

π(h(u, f ,p)|D)h(f |p) log gj(f |p)dh

)

−
∑
u

∑
f

∫
H

π(h(u, f ,p)|D)h(u|f ,p)h(f |p)dh×

(∑
p

∫
H

π(h(u, f ,p)|D)h(p) logO ĥ(p)dh

)
.



The second term can not be influenced by the choice of Oĥ, since it does not involve marginal or conditional version of
Oĥ. The expressions in the brackets () in the first and third term are conditional versions of the Kerridge inaccuracy, which
are, for an arbitrary condition, uniquely minimized for:

(h(u1|f1,p1), . . . , h(un|fn,pn)) = (Oĥ(u1|f1,p1), . . . ,O ĥ(un|fn,pn)) = (egj(u1|f1,p1), . . . ,e gj(un|fn,pn))
and
(h(p1), . . . , h(pn)) = (Oĥ(p1), . . . ,O ĥ(pn)) = (egj(p1), . . . ,e gj(pn)).
Since the estimate Oĥ is using all knowledge pieces in D (see Section 3.), the constraint 3. is satisfied.

5. Conditional probabilities on the whole set of random variables
When gj(f |p) of Fj on Pj , (Fj ∪Pj) = X, is given, then under assumption Oĥ = Eπ(h|D)(h|D), the unique extension

egj , meeting previously mentioned constraints 1., 2., 3., has the form:

egj(xi) = gj(fi|pi)Oĥ(pi), i = 1, . . . , n. (14)

6. Marginal pmf of random vector
When gj(p) of Pj ⊂ X is given, then under assumption that Oĥ = Eπ(h|D)(h|D) the unique extension egj , meeting the

previously mentioned constraints 1., 2., 3.., has the form:

egj(xi) = Oĥ(ui|pi)gj(pi), i = 1, . . . , n. (15)

7. Optimal merger for each considered case
The optimal merger Oĥ = (Oĥ(x1), . . . ,Oĥ(xn)) derived in Subsection 3. has the following forms:
• for the extension constructed in Subsection 4.:

Oĥ(xi) = λ∗0(D) +
∑s

j=1 λ
∗
j (D)Oĥ(ui|fi,pi)gj(fi|pi)Oĥ(pi), for i = 1, . . . , n,

• for the extension constructed in Subsection 5.:
Oĥ(xi) = λ∗0(D) +

∑s
j=1 λ

∗
j (D)egj(xi) = λ∗0(D) +

∑s
j=1 λ

∗
j (D)gj(fi|pi)Oĥ(pi), for i = 1, . . . , n,

• for the extension constructed in Subsection 6.:
Oĥ(xi) = λ∗0(D) +

∑s
j=1 λ

∗
j (D)egj(xi) = λ∗0(D) +

∑s
j=1 λ

∗
j (D)Oĥ(ui|pi)gj(pi), for i = 1, . . . , n.

IV. Conclusion - advantages of this method

Method of combining different types of given information (often incompletely compatible) proposed in this paper brings
following improvement:

• incompletely compatible probabilistic and also non-probabilistic information is treated,
• unified Bayesian solution,
• scalability: this approach can be applied on every source from the group of sources, which can be extremely large

and distributed.
Naturally, we did not discuss many additional questions arising with derivation of the final formula, i.e.:
• unambiguity of the projection of Oĥ back on source’s domain,
• choice of the values βj(D) in (5), j = 1, . . . , s,
• existence and unambiguity of Lagrange multipliers λj(D), j = 1, . . . , n.

They are definitely topics of a future work.
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